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P a t h - f o l l o w i n g  e n e r g y  o p t i m i z a t i o n  in u n i l a t e r a l  c o n t a c t  p r o b l e m s  
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Abstract.  Path-following (load incrementation) methods are studied in this paper for elastostat- 
ic analysis problems with unilateral contact relations in the framework of a large displacement 
theory by means of the parametric optimization techniques. Finite element discretization yields 
sparse polynomial optimization problems with equality and inequality constraints. For such sparse 
problems generically appearing singularities along the path of solutions are completely classified. 
Perturbations involving only a minimal number of parameters are shown to be sufficient to guar- 
antee these generic situations. This clarifies stability and uniqueness questions for the solution 
along the examined path. 

Key words: pathfollowing, parametric optimization, unilateral contact problems, nonsmooth 
mechanics 

1 I n t r o d u c t i o n  

Inequality and equality constrained structural  analysis problems frequently arise in 
civil and mechanical engineering applications. The unilateral contact problem con- 
stitutes a simple example in elasticity with inequality constraints on the pr imary 
variables (displacements) of a structure.  The non-penetrat ion assumption between 
an elastic body and a rigid support ,  or between two elastic bodies, introduces 
inequalities in the problem (see among others [8], [19]). 

The numerical t rea tment  of inequality mechanics '  problems is usually done by 
means of finite element discretization of the structure and iterative solution tech- 
niques based on load incrementation. The mechanical analogon of this procedure 
is easily conceived: the external action (load or imposed displacements) is applied 
gradually on the elastic s tructure in a quasistatic way and the generated equilibri- 
um pa th  is traced numerically, until the end of the prescribed loading sequence or 
the yielding of the s tructure if no solution of the posed problem exists. This pro- 
cedure has been thoroughly investigated for smooth unconstrained problems (cf. 
the recent expositions in [22], [7], [4], [6]) and can be extended to tackle inequal- 
i ty constrained problems as well in an active index set methodology. Theoretical 
questions pertaining to this extension are investigated in this paper.  

Since large displacement elastostatic unilateral contact problems can be for- 
mulated (under certain assumptions concerning the finite element approximation 
and the linearizations used, see e.g. [3]) as a nonconvex, inequality constrained 
optimization problem for the potential  energy function, a critical s tudy of the pro- 
cedures used in nonlinear mechanics in the f ramework of parametr ic  optimization 
theory is considered to be relevant. 
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In this paper the path-following procedure for the discretized problem will be 
identified with a one-parameter optimization problem. Subsequently existence, sta- 
bility and possible bifurcation of the solution along this path will be studied by 
applying results of generic, one-parametric transformations of optimization prob- 
lems [9], [10], [11], [21]. In particular the question of realizability of this solution 
path will be answered, i.e. conditions will be formulated so that  the procedure can 
trace the path of (even unstable) solutions of the problem. In this sense this work 
complements and generalizes the study of [14]. Extension of the path-following pro- 
cedure through segments of the critical point set which violate the nonpenetrat ion 
assumption and thus do not correspond to physically realizable configurations of 
the mechanical structure will be proposed here in the hope to avoid discontinuities 
in the equilibrium points 'path. The latter possibility has not been investigated in 
computational mechanics for inequality constrained problems, although its coun- 
terpart  for smooth problems has been widely accepted [7]. 

It should be noted here that  sparsity of the parametric optimization problem, 
as it occurs in inequality mechanics applications which are discretized by the finite 
element method, is taken into account in this paper. The results of section four 
can thus be considered to be specializations of the ones given in [9] for the fully 
occupied C a problem, to sparse problems. To the best of the authors knowledge, 
this is the first a t tempt  where genericity theory for parametric optimization meets 
sparse problems, as they arise in real-life applications. 

The layout of the paper is as follows: the formulation of a discretized nonlinear 
energy optimization problem for a unilateral structure will be given in section two. 
Questions posed along a path-following technique and mechanical interpretation of 
the effects that  are expected to occur and their impact on the solution strategy wi]] 
be addressed in section three. Stability, uniqueness and existence of the solution 
along the one-parametric path  considered will be discussed in section four, based 
on the theoretical study of [9]. The proof of the genericity theorem is given in the 
last section. 

2 N o n l i n e a r  e n e r g y  o p t i m i z a t i o n  for  d i s c r e t i z e d  u n i l a t e r a l  c o n t a c t  
p r o b l e m s  

2.1 THE B A S I C  R E L A T I O N S  O F  T H E  P R O B L E M  

Let the discrete stress and strain variables of a discretized structure be assembled 
in the/-dimensional vectors e and s respectively. Let u be the n-dimensionai vector 
of nodal displacements and p the energy corresponding nodal loading vector. The 
loading is parametrized by a scalar parameter  t. The whole structure is referred to 
a Cartesian, right-handed coordinate system. All quantities will be referred to the 
initial (undeformed) configuration of the elastic body (total Lagrangian formula- 
tion in the terminology of nonlinear mechanics). Let discrete contact tractions and 

$ corresponding displacements be assembled in the s-dimensional vectors S s and u n 
respectively - for that  part of the boundary of the structure where unilateral con- 
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tact effects are expected to occur. On the part of the boundary where displacement 
boundary conditions (classical bilateral support) will be assigned the discretized 
traction and displacement variables are assembled in the q-dimensional vectors Sn u 
and un u respectively. 

The following relations govern the large displacement, discretized elastostatic 
analysis problem (see [19], [14], [20] among others): 

Compatibility relations 

re] _ = u[,  = g ( u )  -- G ( u )  

L un u h(u)  
(1) 

where G ( u )  is the nonlinear displacement- deformation compatibility operator 
( G  : iT/'~ ~ / R  t, g : / R  '~ ~ / R  s,  h : / R  '~ --+ / R  q ). 

Equilibrium equations 

I s ]  D,,GT(u)g = [ D : G ( u )  T Dug(u) T D : h ( u )  T ] - S  s = tp  
-S~ 

(2)  

where Du denotes the first derivative of the nonlinear operator and superscript T 
denotes the transposed matrix or vector. 

Hyperelastic constitutive law 

s = De~(e )  (3) 

where ~(e) is an appropriately defined convex and smooth potential function which 
in the case of a linear elastic material is a quadratic function, i.e. the law takes in 
this case the form (Hookean material) s = K0e or q(e) = �89 with K 0 the 
natural stiffness matrix (assumed symmetric and positive semi-definite). 

unilateral contact boundary conditions 

- S  s E 0IUad(U)(U ) = dkfUad(U)(U ) = 

= { - -S  s = v T D u g ( u ) ,  v c ~ S  v i >  0, i =  1 , . . . , s  } (4)  

where 0 denotes the subdifferential operator of convex analysis, I K is the indicator 
function of the set K, d~ g denotes the normal cone to the set K and Uad(U) is 
the set of admissible displacements of the structure as restricted by the nonlinear, 
no-penetration kinematic restrictions imposed by the unilateral contact effects: 

Gd(u) = { u e I t n :  g(u) < 0 } (5)  

Bilateral (support) boundary conditions 

h(u)  = 0 (6) 
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2.2 ENERGY MINIMIZATION PROBLEM 

A potential energy minimization problem in a total Lagrangian setting of the 
mechanical problem (i.e. everything is referred to the initial, undeformed configu- 
ration), and an incremental variational formulation, more suitable for an updated 
Lagrangian setting, will be outlined in this section - together with the approxima- 
tions used in computational mechanics for the derivation of various order mechani- 
cal theories. The purpose of this paragraph is to underline the connection between 
energy optimization and nonlinear structural analysis, without any claim for com- 
pleteness. 

Energy formulation 
The total  potential energy minimization problem is of the form: Find displace- 

ments of the structure u E R n such as to solve the constrained minimization 

H(u) = min 
v E Uad 

problem: 

with 

{II(v)  = H i n t ( V ) -  I I e x t ( v ) }  

v E U~d = { v C iR'~ l h i ( v )  = O, g j ( v )  ~ O for all l < i < q, l < j _ s } .  (7) 

Here flint(v) = II int(e(v))  is the internally stored elastic energy of the structure, 
which for a linearly elastic material takes the form: 

Hint(v) = ( l e T K 0 e  l e = G(u)}.  (8) 

The function II,~t(v) is the potential energy of the externally applied loading, 
which is assumed to be conservative, i.e. according to (2): 

II.x,(v) = - t  p r u  (9) 

Approximation of the displacement-deformation compatibility equation (first rela- 
tion in (1)) by using Taylor series expansion techniques, restriction to certain 
lower order terms in this expansion and substitution in (8), (7) results in vari- 
ous order approximation theories for the mechanical problem. For instance in a 
first-order theory (i.e. small displacement assumption) G is a linear function of 
u, i.e. G = G l u .  If first order terms are used in the aforementioned expansion 
and in the subsidiary equality and inequality constraints of the problem~ we get 
the quadratic, linearly constrained minimization problem: (written here under the 
additional assumption that  G(u0) = 0, for notationM simplicity) 

II(u) -- mln  {II(v)  -- lvT[G1TKoG1]v  - t p T v  } (10) 
2 

v c 
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with 

Ua lin = {v E ~tn[ h i ( u o ) + D u h i ( u o ) v = 0 ,  l < i < q ,  d 
gj(u0) + D u g j ( u o ) v  _< 0, 1 < j _< s )  (11) 

where K = G1TKoG1 is the assembled stiffness matrix of the structure. The 
optimality conditions for problem (10) give rise to the classical linear variational 
inequality problem (cf. e.g. [8], [18], [19]): Find u e Ua~  such that: 

u T K ( v  -- u) - t p T ( v  - u) > 0, V v e U a ~  (12) 

ttemark: Note that  the above mentioned linearization must be consistent with the 
fact that  our problem admits a potential, since otherwise nonsymmetric matrices 
arise in the expression of II(u) (cf. e.g. [3], [20]). Moreover different order approxi- 
mations for e.g. displacement and rotation variables in a nonlinear elastic structure 
lead to the formulation of various models in mechanics (cf. various shell and plate 
theories). These questions will not be discussed here. [] 

Incremental formulation 
Incremental energy optimization problems can be formulated by using standard 

linearization techniques and taking into account the inequality and complemen- 
tary relations (cf. [19], [14], [2], [22]). In the sense ot the previously mentioned 
approximation scheme, using second order terms in kinematic linearization, a lin- 
ear material law and first order terms in the expansion of equality and inequality 
constraints, the following incremental problem can be formulated (for notational 
simplicity equality constraints are not considered): 

Let the stress, displacement and deformation state of the structure be given 
for loading level t (i.e. s, e, u, -SSn, ff0(~)), where Jo(U) denotes the set of active 
indices in u, i.e. 

So(U) := {j e { 1 , . . . , s }  I gj(u)  = 0}. (13) 

Let us formulate the problem that describes the incremental changes of the above 
quantities (denoted by w ~, fl, - S ~ )  as the load level is increased by 6t. To this end 
the defining relations of the problem are differentiated with respect to t, assuming 
that the gradients of the involved functions exist (where ~ is the solution at the 
beginning of the time interval 6t, i.e. at t). 

T 1 15dr = DuG(U)  K o ~ D u u G ( ~ ) f l d t  udt + DuG(~)TKoDuG(~)f ldt  (14) 

+ sTD2uuG(u)iadt + E -S-SnjDuugj(u) fldt - Dug( ~)T~sdt  + "'" 
je:ro(U) 

For the unilateral contact constraints we consider first the following complete sub- 
division of the index set of inequality constraints: 



352 A. ROHDE AND G.E. STAVROULAKIS 

The strongly active index set, which is denoted by 

I1 : {j 6 {1 , . . . s}  such that  g3(~) : 0 and - SSj(~) > 0} (15) 

the semi-active index set 

S :Z-2 : {j 6 {1 , . . . s}  such that  gi(~) : 0 and - Snj(~ ) : 0} (16) 

and the inactive index set 

/:3 : {j 6 {1 , . . . s}  such that  gi(~) < 0 and - SSj(~) : 0} (17) 

with cardinalities equal to sl ,  s2, s3 respectively (with sl + s2 + s3 : s). 
The incremental quantities (e.g. fi[dt) can be considered as directional deriva- 

tives, along the direction defined by the loading vector, of the solution of an 
inequality constrained energy optimization problem (compare with the previous 
paragraph; see e.g. [14] and [5] for details on the mechanical and mathematical 
issues respectively). So the rate problem is formulated as an incremental energy 
optimization problem: 

min{ fiT[K/i~(~)]fifi + ~fiT[K T + Ks + KsC]fi - bTfi  } 
fi 

such that  

fi~,dt : D~gi(~)fldt < O, Vi 6/:2, fi:,dt : D~,gi([)fldt : O, V i e / :1  (18) 

In (18) the third order stiffness matrix K{ik(~ ) is used, where 

Kiik(~  ) = D ~ G ( ~ ) T K 0 1 D u u G ( ~ )  (19) 

the initial strain and stress stiffness matrices K w and Ks are defined (cf. [22], [2]) 

KT  = D u G ( ~ ) T K o D u G ( ~ ) ,  Ks : sTDuuG(~)  (20) 

and an additional contribution Ks c to the initial stress stiffness matrix appears that  
depends on the initial contact stresses and the curvature of the boundary surface, 
namely (cf. [14]): 

K[ : Z- njDuugj( ) (21) 
jez2 

In (21) an appropriate renumbering of the displacement variables has been assumed 
such that  the first sl variables o f ~  are equal to the tangential displacements arising 
at the active set of the unilateral contact constraints. 
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We shall not discuss more modelling aspects here - we shall use instead a general 
model formulation of the energy optimization problem, which can then be fitted 
to every computational mechanics model considered. 

Model formulation 
In the sequel the following general discrete potential energy optimization prob- 

lem will be considered as a model problem (analogously to [16], [17] for the uncon- 
strained case): Find the (even local) minimization point(s) u E Uad (i.e. stable 
equilibrium solutions of the structure) or, generally~ the critical points (i.e. stable 
and unstable equilibrium points of the structure) of the potential energy minimiza- 
tion problem 

with 

n(u,t) 

II(u,t) = rain II(v~t) (22) 
vCUad 

= W(u)  - V(u , t )  = ATu + uTBu + u T C u u - - / p T u  (23) 

i = 1  1 <i,j<_n 1 <i,j,k<_n i = 1  

(with ai, bij, c i jk ,pi  E R ,  bi,j = bj,i and cijk = cjik = cikj for all i , j ,  k C {1, . . . ,  n}) 
and 

U a a = { u E / R  ' ~ ] h i ( u ) = 0 , g / ( u ) _ > 0 f o r a l l l < i < q ,  < j = l _ < s } .  (24) 

In (23) index notation has been used for the expression of the potentiM energy 
function with respect to a right handed, orthogonal coordinate system. The sym- 
metric second and third order tensors B (resp. C) have been used with the mean- 
ing of appropriate (resp. higher order) stiffness matrices. The vector A stands for 
appropriate initiM stresses. The nonlinear relations in (24) are assumed to have 
derivatives of analogous order. This is required by the specific application (e.g. 
mechanical theory) on hand. 

3 O n e - p a r a m e t r i c  t rans i t ion  and  load - inc remen ta t ion  

The parameter t E/R 1 in problem (22 - 24) controls the applied load on the unilat- 
erally constrained elastic structure. Starting from zero level of loading (i.e. t = 0), 
where initial displacements are known u = 0, the equilibrium configuration(s) of 
the structure can be followed by walking along the path t E [0, tl] until the final 
loading level t ip  is reached. 

If we can determine local minimum points for the potential energy minimization 
problem along the whole path, then this path leads to a quasistatic variation of the 
displacement, stress and strain variables of the structure. This implies that snap- 
through and snap-back effects that could cause departure from the quasistatic 
behaviour assumption do not arise. 
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Sometimes certain parts of the path can not be followed in the space of mini- 
mizing points, but a continuation in the enlarged space of critical points is possible 
(i.e. both mechanically stable and unstable equilibrium points of the structure are 
considered. This latter path can be followed numerically, although certain dynam- 
ic transitions are expected to occur in the real structural system if this loading 
sequence is applied to it [7]. 

If at some load level t2p the one-parametric path of minimum points can not be 
followed any more, then either our structure collapses at that  point (i.e. the prob- 
lem has no solution or intuitively speaking there does not exist enought supports 
that  could stabilize the analysed structure) or a solution of the problem exists but 
it can not be reached by path following along the chosen path (parametrization). 

One more comment concerning the analysis of the parametric optimization 
problem that  follows is in due course here. Since finite element approximations 
are used for the discretization and the numerical treatment of mechanical prob- 
lems, the arising problems are sparse. Sparsity is taken into account in the analysis 
of the parametric optimization problem that  follows. Thus the results of the next 
sections can be shown as a specialization and a concretization of the results giv- 
en in [9] for fully occupied Ca-problems to the sparse problems of finite element 
analysis in mechanics. 

4 Gene r i ca l l y  a p p e a r i n g  cases a long  t h e  p a r a m e t r i c  p a t h  

4.1 SPARSE UNCONSTRAINED CASE 

Let us consider for the moment the unconstrained energy optimization problem 
(23) with Uaa = / R  n. We assume that  no unilateral constraints are prescribed and 
that  sufficient equality constraints have been incorporated in the finite element 
model such as to prevent every rigid body motion of the structure. 

In this case, for each load level t the equilibrium configuration ~ of the structure 
is a critical point of the energy function (cf. (23)) 

= W(u)- V(u,t)= ATu + �89 +  u Cuu- tp u (25) 

The point ~ is called a critical point of II(u, t) for the load level t, ff 

(u , t )  6 E=it = {(u, t )  6 / R  '~+1 ! D,,II(~,t)  = 

A + B~  + 2 ~ T c ~  -- t p = 0 } .  (26) 

The subset of Y, crit where the second derivative ("stiffness matrix") of the potential 
energy function becomes singular is 

~a~g = {(U,t) C ~=~, I D ~ n ( ~ , t )  = B + C~  is singular } (27) 

For (~, t) e Ecrit the point ~ is called a degenerate critical point of II(u, t) for the 
load level t, if (~, t) E ~d~g - else it is called nondegenerate. 



PATH-FOLLOWING IN UNILATERAL CONTACT PROBLEMS 355 

There is an open and dense set of coefficients for A, B, C, p with the following 
properties (cf. genericity theorem below) 

- ~cri~ is a manifold and ~deg C ~ r i t  is a finite set of isolated points 

- for all (u, t) E ~d~9 exactly one eigenvalue of D~,,flI(u, $) passes zero and the 
projection map Ce(u,t) := t restricted to ~crit has a quadratic maximum or 
minimum in (u, t) 

All points of the set Z = ~r i t \~deg belong to the set of nondegenerate critical 
points of II that  are designated to be points of Type 1 later on in this paper and in 
[9]. By the implicit function theorem there exist a path of minima u(t) for the one- 
parametric optimization problem, as far as we remain in the set ~ = Zcrit\Eaey 
and this path can be traced by classical path-following techniques. 

At the points in ~d~g the path of minima (e.g. stable solutions of the mechanical 
problem) with respect to the parametric optimization problem can not be followed 
any more. If one considers following this path, the appearance of jumps and their 
algorithmic realization must be considered (see [9]). 

Thus for the unconstrained case the results of the detailed analysis given in 
the next section extend the results of [12], [13] for fully occupied problems and 
C3-functions to sparse problems. 

4.2 INEQUALITY AND EQUALITY CONSTRAINED SPARSE PROBLEM 

For a constrained set of admissible displacements with general nonlinear unilateral 
and bilateral constraints: certain modifications of the previously described scheme 
must be considered. 

Let us first examine closely the constraint set of problem (23) (note the different 
definitions of the inequalities in order to comply with the form used in [12], [13]) 

U~d = ( u  E /Rnlh~(u) = 0, 1 < i < q, g j ( u )  ~ 0, 1 _< j ~ s } (28) 

The equilibrium points ~ at a load level t minimize the energy function II(., t) in 
(23) and (25), i.e. 

~I(u,~) = min{n(u ,~ )  t u C G d  } (29) 

We say that  a point (~, t )  E Uad(t) satisfies the linear independence constraint 
qualification (shortly LICQ) if the vectors 

Dhi(~),  Dgj(~),  for 1 < i < q, j E fro(U) (30) 

are linear independent, where ff0(~) denotes the set of active indices in ~. 
If the condition LICQ holds for all u C Uad, then the critical points, have to 

satisfy a Lagrange condition: 
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E~it := {(~, t )  C U~d x / R  I 3~1 , . . . ,Xq ,~ j  E R, Vj C J0(~)  with (31) 

q 

D~,II(~,~) = ~ i D h i ( ~ )  + ~ -fijDgj(~) } 

If moreover ~j  > 0 for all j C oq0 in (31) for some point (~, t) ,  then ~ is called a 
Karush Kuhn Tucker (KKT) point at the level t. KKT-points are possible candi- 
dates for equilibrium points of the mechanical system, since otherwise there exists 
j C J0(~)  such that /z j  < 0, i.e. adhesive traction would arise which is not permit- 
ted in our model. 

Let for (~, t) E E~i~ the LICQ be satisfied. If additionally for ~j ,  ~j  as in E~it 
the two conditions 

ND1 ~j  r 0 for all j C ffo(~) (32) 

ND2 2 - - DuuL(u , t)]T(u) is nonsingular (33) 

hold then ~ is called a nondegenerate critical point of I I ( . ,  t-) with respect to Uad. 
Here L(u,  t) denotes the Lagrangian 

q 

L ( u , t )  = I I ( u , t ) -  ~--~Xihi(u)- ~ ~igj (u)  
i =1  j e . f 0 ( u  ) 

(34) 

and T(u) the tangent space in u to the set of admissible displacements Uad, i.e. 

T(u)  -- N ker(Dhi(u))  fl N ker(Dgj(u))  (35) 
i e {1 , . . . , q}  j e & ( u )  , 

\ 

The number of positive / negative Lagrange multipliers and positive ] negative 
eigenvahes of L(u,  t)lq-(u ) characterize the problem locally (cf. [9], p. 203, or [12]). 

Via some coordinate transformation there exists a simple normal form for the 
optimization problem in the neighbourhood of nondegenerate critical points (cf. 
[9], p.34). 

4.3 G E N E R I C A L L Y  A P P E A R I N G  CASES IN SPARSE O N E - P A R A M E T R I C  T R A N S F O R -  

MATION 

The polynomials If, gj, hi defining the problem in (21) are sparse in the sense that  
e.g. gj(~) may not depend on all variables ui or the Hessian D~,~II has nonzero 
entries only close to the diagonal (banded matrix). The following sparse subspaces 
of polynomials take into account the specific form of (II, gl , .  �9 -, gs, h i , . . . ,  hq). 



PATH-FOLLOWING IN UNILATERAL CONTACT PROBLEMS 357 

We abbreviate 

~ a [ z l , . . .  z,~] = { p : / R  '~ - 0 / R  11P polynomial in ~1 , - . . ,  Xn, degree(p) < d}. 

Let 7 ) be a linear subspace of 1Rd[Ul,...,u,~,t] and Gj, ~ i  linear subspaces of 
/Rd[u l , . . . ,  u,~] for all 1 < i < q, i < j _< s with the following properties: 

For all I I (u , t )  e 7), gj(u) e Gj, hi(u) �9 7-ti and a, fl ,6 �9 R with I~I, IZI, I~I 
sufficiently small holds 

n 2 i) n (u ,  t) + ,~ E i= l  ui + Z~i �9 7) and 

ii) g a - ( u ) + 6 � 9  and hi(u)+~eni f o r ~ l l l < i < q , l < j < ~ .  

All the functions ( I I , g l , . . . ,  g,, h i , . . . ,  hq) we consider below are elements of the 
finite dimensional space 

A M - - P  x ~ x . . .  x Fs x ~  x . . .  x ~ q .  

R e m a r k  The definition of the problem space M is much less restrictive than the 
problem formulation in (23). There are no symmetry conditions in the definition 
of M and the degree of the polynomials may be greater than three. Sparsity is not 
necessary but admissible - if we can perturb II linearly in u, quadratically along 
the diagonal of DuuII, and all the functions hi, gj in the constant terms. 

The theorem below states that  independent of the exact form or degree of 
the polynomials involved generically there will always appear only the same three 
different types of critical points. 

We use the canonical topology for the finite dimensional space AM, i.e. a topology 
induced by the Euclidean distance in the coefficients of the polynomials involved. 

G e n e r i c i t y  T h e o r e m  For 62 = (II, g l , . . . ,gs ,  h l , . . . ,hq)  E f14 let Uad and 
Ec~it be defined as in (28} and (31). Let AM* denote the set of those functions in 
M where each (u, t) E Ecrit is of one of the Types 1,2,3 defined below. Then 

i) M* contains an open and dense subset of M ;  

ii) Emit \ { points of Type 2 } is a finite union of one-dimensional C ~176 
for all 62 E All*/ 

iii) the points of Type 2 and 3 form a finite subset of Ecrit for all 62 E AM*. 

R e m a r k :  There are only three different Types of critical points in contrast 
to the five Types in [11]. This is due to the fact that  the functions gj, hi are 
independent of t, so a small perturbation guarantees that  the LICQ is satisfied 
for all u in the feasible set Uad. 0. 
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Type 1: nondegenerate critical poin t  
We say that  (~,~) 6 Emit is of Type 1, if all the conditions LICQ (30), ND1 (32) 

and ND2 (33) hold. 
The variation of (~, ~, g) w.r.t, a small change in the parameter t can be followed 

by means of implicit function theorem for the function Fff0(~ ) = F with 

F :  ~ hi(u), i =  1 , . . . , q  | (36) 
gj(u), j e S0(u) ] 

with F -- (~, ~, ~, t )  = 0 and F : /R '~+q+'~ ~ / R  n+q+~~ where so is the number 
of elements of Jo(U), i.e. s0 = IJo(~)l- 

The conditions LICQ and ND2 guarantee the maximal rank of the Jacobian 
of F with respect to (u,)%/z). The condition ND1 yields that  the path u(t) for 
It - t l  ~ e does not leave the feasible set. 

Classical smooth continuation techniques can be used in this case to follow the 
equilibrium configurations of the structure. No Lagrange multiplier and no eigen- 
value of D2,~L(~, 7)IT(u) can change sign, so the topological type (minimum, saddle 
point, . . . )  and the number of active constraints are locally invariant (cf. [12]). 

T y p e  2: C h a n g e  in t h e  ac t ive  index  set  
The point (~, t )  E E~it is of Type 2, if LICQ (30) and ND2 (33) are still 

satisfied - but for ffo(~) ~ 0 (w.l.o.g. Jo(~) = {1 , . . . , p} )  and exactly one of the 
Lagrange multipliers vanishes (w.l.o.g. #p = 0), i.e. condition ND1 (32)is violated. 

Furthermore, if the constraint function gp were deleted, then (~, t )  would be a 
point of Type 1 of the new problem. For this new problem the critical points can 
be locally represented by a differentiable function fi(t) (cf. Type 1) for It - 7] _< e. 

For (~, 7) of Type 2 holds 

d ( g p  o fi)(t) =: 7 # (37) 0 

This means, that  the two curves that  represent E~it locally (one with gv deleted, 
the other one with gp treated as an equality constraint) intersect with nonzero 
angle. For more details, an explicit formula for V and a geometric interpretation 
of. [11] or [9], p.43. 

T y p e  3: Q u a d r a t i c  turning point 
The point (~, t )  C E~rit is said to be of Type 3 if the conditions LICQ (30) 

and ND1 (32) hold in ~ and (~ , t )  respectively, but exactly one eigenvalue of 
D2uL( ~, t)lT(u-) passes zero, so ND2 (33)is violated and the projection map r t) := 
t restricted to Ecrit has a quadratic maximum or minimum in (~, t ) .  More details, 
characteristic numbers and a geometric interpretation can be found again in [11] 
and [9], p.44. The active index set of inequality constraints does not change at this 
point, thus smooth continuation techniques (analogous to the ones of section 4.1, 
cf. [9] or [11]) can be used to overcome this critical point. 
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4.4 PROOF OF THE GENERICITY THEOREM 

We say that  a given function (II, gl , . . . ,  gs, ha,. . . ,  hq) �9 M is an element of A/I*(r), 
if and only if all those points (u, t) �9 E~it satifying 

3)~,tt : F ( u , ~ , # , t ) = 0  and I I (u ,A,#, t ) l l~_<r  2 

are of Type 1, 2 or 3 (where F denotes the function from (36)). 
We will show first, that  the set M*(r) is open and dense in M .  

4.4.1 Union of manifolds: 
For each f l  C_ {1 , . . . ,  s} let F:r denote the function in (36) with J0(u) replaced 
by f t .  For each Function F j  there is by Sard's theorem an open and dense (semi- 
algebraic) set of regular values d(ff) = (d(J)/)l<i<,~+q+W [ �9 /R '~+q+WI. We can 
choose d(ff)  arbitrarily close to zero and replace 

n 

n(u , t )  by n(u,  t) - (38) 
i=1 

and for all 1 < i < q, j �9 f l  

hi(u) by h i (u ) -d ( f f ) ,~+ l  and gj(u) by g i ( u ) - d ( J ) ~ + q + j .  

Then for IId(J)N2 sufficiently small, the new problem still is an element of .s by 
definition of A4. 

But now the zero vector 0 is a regular value of F j  (related to the new functions 
H, h~,gj), i.e. for all (u, ~, #, t)) �9 B(0, r) holds 

Fbr(u, :~,/z, t) = 0 ~ r a n k ( D F j ( u ,  A, it, t)) = n + q + IJI- (39) 

Here # = (#i), J �9 f f  denotes a real vector with Iffl entries (depending on J )  in 
contrast to ~ = (A1,---, Aq). As a consequence of (39) the set 

{ F j = O } ~ : = ( ( u , ~ , # , t )  lF j (u ,~ , l~ , t )=Oand [ l(u,~,#, t) l l2_<r 2} (40) 

is the intersection of a one dimensional C~ with the ball with radius 
r and center zeroB(0,  r), if q 4-1JI ~ n - e l s e  the set {F%(u ) -- 0} is  empty, 
because there are too many constraints on u only. 

The sets of regular values for the perturbation in (38) are open and dense, while 
there are only 2 s possibilities for the selection of the index set f t .  Therefore we 
can find one arbitrary small perturbation of II, hi, gj such that  0 is a regular value 
for all F j  simultaneously. In particular, the property (39) is stable under further 
small polynomial perturbations. 

Studying only the last q+ I.-71 components of F j ,  we see that  a suitable, uniform 
choice of all d(ff) also guarantees the condition LICQ for all u E U~d. The property 
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(39) is stable i.e. it remains valid under further, sufficiently smooth polynomial 
perturbations in hi~ gj as well. It also yields uniqueness of hi, ~3. 

Now we add to the function F j  components gp, gm with p,m C {1, . . . , s ) \J .  
In analogy to (38) we obtain a small linear perturbation in II and small constant 
perturbations in the hi~gj such that the zero vector is a regular value of the 
functions Fj,p[~(o,~) and Fj,~,m]~(0,~ ) with 

_~j,~l~(o,~)(u, ~, ~, t) := (Fj(u,g~(u) ~' ~' t) ) ,  pC_y 

and 

~s,v,,~l~(0,~)(u, ;~, ~, t) := 
( F~(u, ~, , ,  t) 

g~(u) , p, m C J a n d p # m  

for all combinations of J , p ,  m. 
The function Fj ,p  is a semi-algebraic function f r o m / R  '~+q+l:rl+l into itself, so 

there are only finitely many solutions of the equation F:r,p(u, )% #, t) = 0, i.e. the 
set of points of Type 2 is a finite subset of Ecrit. 

The function Fj ,p  m a p s / R  '~+p+IJI+I in to /R '~+p+I'~I+2, so for 0 regular value the 
set of solutions of F j ,p(u ,  X,/i, t) = 0, is empty. Consequently, it is impossible that 
two Lagrange multipliers in E~it vanish simultaneously. Again, the two regularity 
conditions above are stable over B(0, r) under small polynomial perturbations. 

In the sequel II, hi ,gj  always denote the perturbed functions of (38), where 
d ( J )  is chosen uniformly with respect to all the previous remarks. 

~.~.2 Eigenvalues 
For (~, t)  E Ecri~ with F(~, )~ ,# , t )  = 0, F = Fj0(~ ) (cf. (36)) and (u,)~,#, t )  E 
B(0, r) we know already that LICQ holds in ~ and that at most one of the Lagrange 
multipliers vanishes. There is left to study the rank conditions for the derivatives 
in more detail. Let L denote the Lagrange function mapping (u, X, #~ t) to the first 
n components of F and assume w.l.o.g, that Jo(U) = {1 , . . . , p} ,  p _~ n -  q. The 
derivative of F is a matrix of the form 

DF(u'X'l~'t) = (\ D2L(u'X'/~'t)B(u) -BT(U)o --0 p ) E /R ('~+q+p)x('~+q+p+l), (41) 

where the i-th row of B(u) equals Dhi(u) if i ~ q - else it equals Dgi_q(U). Due 
to rank[DS(u, ~,,, t)] = ~ + q + p from (39) we have for 

A ( u , ~ , # , t )  := Du,~,.DF(u,)~,#,t) rank[A(u,s _> n+pq- q -  1. (42) 
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Now we try to find a small parameter 8 E R{ such that the perturbed problem 
with II replaced by 

l i e (u ,  t ) : =  II(.,  t) - (43) 

(with Fe, Ae(u, ~, #, t) defined accordingly) satisfies for all 

(u,)~,/z, t) E {Fe = 0}, with det(Ae(u, A, #, t)) = 0 (44) 

the condition 

Vv E/R'~+v+q+l\{0} : DFs(u,)%#,t)v= 0 ~ (Ddet(Ao))(u,;~,#,t)v ~ O. (45) 

If det(A0(u, A, #, t) = 0 holds, then Condition (42) yields that  at most one eigen- 
value of Ae passes zero. The Condition (45) guarantees that this happens with 
nonzero derivative along E~rit. Of course 0 is chosen sufficiently small that  all the 
regularity conditions discussed previously remain intact. 

Let W(u )  E ]R nx(n-q-p) be a matrix such that the columns of W(u)  form 
an orthonormal basis of T (u )  from (35), the kernel of B(u) .  The matrix B(u)  is 
of maximal rank due to LICQ. Using a new basis of n:t "~+p+q consisting of the 
columns of the matrix 

W(u) 0 BT(u) ) 
0 Eq+p 0 ' 

Eq+v E / R  (q+p)• the unit matrix 

it is easily checked that 

det(Ae(u, A,/z, t)) = -det(B(u)BT(u)) �9 P(u ,  2~, #, t, 0) (46) 

with 
P (u ,  A, #, t, 8) = det [WT(u)(D~L(u,  ;~, #, t) - 0E,~)W(u)]. 

Seen as a function in 6 the polynomial P is the characteristic polynomial of the 
matrix Y(u,  A, #, t) := [WT(u)D~L(u, A,/z, t )W(u)]  e /R ('~-q-p)• Due to 
LICQ we have det(B(u)BT(u)) ~ 0, so the number of eigenvalues of A0(u, A, #, t) 
passing zero equals the number of eigenvalues of Y(u,  )~, #, t) passing 0. Therefore 
the rank condition (42) yields for (u, A, it, t) as in (44) 

d 
~ P ( u ,  A, it, t, 0) ~ 0. (47) 

4.4.3 Critical points of Type 2: 
For the new problem with 1I replaced by IIe, P (u ,  A,#,t, O) equals in fact the 
determinant of the matrix D2L(u, t)IT(,,) in condition ND2. There are only finitely 
many points where a Lagrange multiplier vanishes (cf. the end of Section ~.~.1). 
For these points we can now obtain the nondegeneracy condition ND2 via an 
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arbitrarily small perturbation in 0 by (47). Again, the parameter 0 can be chosen 
simultaneously for all sets f f  C { 1 , . . . , s } )  and we have stability over S(0 ,  r). 
Let (~, t )  be one of these points. There is left to check condition (37) (cf. Type 
2, w.l.o.g. #p = 0). Let fi(t) denote the differentiable curve parametrizing the 
set of critical points of the problem where the constraint gp has been deleted. 
Then we can choose an arbitrary small regular value dp of the function gp o fi and 
replace gp(u) by gp(u) - dp (constant perturbation is admissible in ). Then the 
transversality condition (37) is satisfied (for an explicit formula for 3' cf. [11] or 
[9]). This completes the discussion of Type 2. The candidates for the perturbations 
above can be picked from open sets (thus stability). 

4.4.4 Critical ponts of Type 3: 
For abbreviation we put (for d E / R  '~+q+p, .7 fixed) 

F ( d , 0 ,  u, :k,#, t ) : =  (Fe(u, ;~,/~, t ) -  d, P (u ,  A,#,t,O)). 

Then the condition (45) is equivalent to the condition 

~'(d,  0, u, ),, #, t) = 0 => rank(Du,~,mt~'(d, 0, u, ),, #, t) = n + q + p + 1 (48) 

for a~ (u, ~, ~, t) e ~(o, ~). 
The computation of suitable parameters d, 8 near zero such that (48) holds is 

based on the idea of Thorn's transversality theorem. For (uo, Ao, #o, to) E B(0, r) 
satisfying 

9r(O, O, uo, ~o, ~o, to) = 0 

differentiation of .T with respect to d, 0 yields 

Dd,o:7:(O, O, u0, t0) = -E,~+q+p 0 �9 ~(,~+q+p+l)x(,~+q+p+l) (49) 
0 T g 

with g = ~ P ( u 0 ,  Ao,/~o, to, 0) ~ 0 by (47). 
So the implicit function theorem can be applied locally. We cover the compact 

set 
n := {(u, ~,~,t,0~+q+p+l)l (u ,~ ,~ , t )  �9 ~(0,~), y (0}  

by finitely many small open sets Oi where the assumptions of the implicit function 
theorem hold. Let 7r(Oi) denotes the projection of Oi to the first n q- q + p + 1 
components. The sets Oi are chosen such that for all (u, )~, /z, t) �9 ~r(Oi) semi- 
algebraic C~-functions di, 0i are defined with 

d i ( u ( i ) , . . . ,  t(i), 0) = 0, 8 i (u ( i ) , . . . ,  t(i), 0) = 0 (50) 

and 

Y ( d ~ ( u , . . . ,  t), e~(u, . . . ,  ~), u, >,, ~, t) = O, V ( u , . . . ,  t) e ~(0~).  (51) 
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For all i the set of regular values of ~i  := (di, 0i) is open and dense - we can find 
one regular value (dT~g, 0reg) for all ~i arbitrarily close to zero. Then for 

(~ ,~ ,# ,7)  E 7r(O~) with F(dreg,Oreg,u,~,'-fi, 7) = 0 (52) 

holds 

�9 i ( ~ , X , # , 7 ) = ( d ~ g , 0 ~ a )  and r a n k [ D ~ ( ~ , . . . , t ) ] = n + q + p + l .  (53) 

Differentiating (51) with respect to d, 0 then yields for this (~ , . . . , 7 )  

Dd,8~'(dr~g, 6 r ~ g , ~ , . . . , 7 ) D ~ ( ~ , . . . , 7 )  + Du,a,g,t~(dr~g,. . .  ,7) = 0 (54) 

The first two matrices have maximal rank due to (49), the definition of Oi and 
regularity of (d~g, 0r~g). So the second matrix is of maximal rank (n + q + p + 1) 
also and this gives the assertion (48) inside of the union of all the sets 7r(Oi). 

Now Af := B(0, r ) \  Ui 7r(Oi) is compact and 

V(u , . . . , t )  e H  : # 0. 

Continuity of ~" then yields for (d~g, 0T~g) sufficiently small 

V ( u , . . . , t )  E A/" : ~-(dr~g, 0~ a , u , . . . , t ) , ~  0 (55) 

which proves the assertions (45) and (48). 

These imply for ( ~ , . . . , 7 )  E B with 5r(d~g, 0~g ,E , . . .  ,7) = 0 that the projec- 
tion map r  := t restricted to E~rit near (E,t)  has a quadratic maximum or 
minimum in (E,t)  (cf. [11], p. or [9], p.45 for a characteristic number sign(fl) indi- 
cating maximum or minimum). Below we only discuss the unconstrained setting 
(q = p = 0). The general case can be reduced to this case via local coordinate 
transformation (see [13]). 

Let (~, t) be a critical point as in (48) (with q = p = 0) and 

: ( u ,  t ) : - -  t) - 0d . 
- 2 ui" 

i----1 

Due to the rank condition (42) we can parametrize the solution of D u f ( u ,  t) = 0 
locally via implicit function theorem (w.l.o.g. as a function in Ul) by 

W(Ul) = ( u l , u 2 ( u l ) , . . . , u , ~ ( u l ) , t ( u l ) )  with w ( ~ l ) =  (~,7). 

Then the derivative w(u~) is the tangent vector to ~ - i t  in w(u l ) ,  and for all u~ 
near ~1 

[ D D u f ( w ( u l ) ) ] f v ( u ~ )  = 0 (56) 
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For (~, t) E P'd~g the rank condition (39) is still vahd so 

rank[D2f(~, t ) ]  = n -  1, rank[DD,f(~,-t)] = n ~ t ' (~,)  = 0 (57) 

where t ' (u l )  is the last component of @(ul). Now (57)implies that  (~ , t )  is a 
critical point of Ct. 

Let w(ul) denote the first n components of @(ul). Then (57) and (56) further- 
more yield that  w(gl) is an eigenvector for the zero eigenvaiue of D~f(~,t) .  Via 
an additional, hnear independent equation we can obtain locally a smooth curve 
v (u l )  of eigenvalues of D2uf(w(ul)) with 

v(~ , )  = w(~l) and vT(ul)D=uf(w(u~))v(ul) = ~(ul)HV(Ul)l]2 a, 

where ~(ul) denotes the eigenvahe of D2uf(W(Ul)) passing zero in E 1. Then there 
is a differentiable function h such that  

w(ul)T[D2uf(W(Ul))]w(ul ) = ((ul)ll~o(ul)ll~ + (ul - ~1)2h(ul). (58) 

Differentiation of (56) multiphed by ",~r 1) from the left hand side, together with 
the relation (58) and ('(~1) ~ 0 due to (45) yield t"(~l)  r 0 - i.e. we have a 
quadratic turning point. This finishes the proof of the auxihary condition that  
AA*(r) is open and dense in Ad. 

~.~.5 Extension of the results to the whole space 1R n 
The set .Mr is a complete metric space, so it is a Baire space. Thus the intersection 

= A a*(T) (59) 
r = l  

is still a dense subset of .hA (cf. [15], p. 387). Due to this semi-algebraic nature 
of the problem there exsists a uniform upper bound on the number of connected 
components of the sets of points 1, 2, 3 independent of r (cf. [1]). The set AA* also 
is a semi-algebraic set in the coefficients of the polynomials - so if M*  is dense 
one can find (by means of a stratification, cf. [1]) a subset of At* that  is open and 
dense in Ad. q.e.d. 
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